

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE Further Mathematics AS Further Decision 1 Paper 8FM0_27

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 8FM0_27_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 40.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response they</u> <u>wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.

7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Question	Scheme	Marks	AOs
1(a)		B1	1.2
		(1)	
(b)(i)	A semi-Eulerian graph contains <u>exactly two nodes</u> of <u>odd order</u> (and any number of nodes of even order)	B1	2.5
(b)(ii)	e.g. (two semi- Eulerian subgraphs of K_5 with a different number of edges)	B1 B1	1.1t 1.1t
		(3)	
(c)	e.g. The graph with five vertices has $\frac{1+2+2+3+4}{2} = 6$ arcs but a tree on five nodes would contain only 4 arcs	B1 B1dep	2.2a 2.4
		(2)	
	1	(6 n	narks
	Notes		
(b)(i) B1: CAO (a nodes' or 'a (b)(ii) B1: One co B1: Two co different nu (c) B1: Deduci be connected and the tree	give bod for position of nodes) accept 'there are exactly two odd nodes' but must contain exact oe (e.g. ' all but 2 nodes have an even order' but not 'the graph has two odd nodes' rrect semi-Eulerian subgraph of K_5 with five nodes prect semi-Eulerian subgraphs of K_5 with five nodes – note that the graph mber of edges ng that the graph has 6 arcs or a tree on five nodes has 4 arcs or the nodes of to the other 4 nodes or an argument based on the sum of the orders of (but must relate the orders to the number of arcs and not the number of a order 4 and one of the nodes of orders 2 or 3 would create a cycle or a tree)) hs must ha e of order 4 both the gr nodes) or t	ve a 4 mus aph he
orders is 12	der 1 mplete argument – graph has 6 arcs and the tree would only have 4 arcs 6 compared to 8 for the tree or the node of order 4 must be connected to t l the other vertices would have to have order 1 or the graph has 6 arcs an	he other 4	nodes

orders is 12 compared to 8 for the tree **or** the node of order 4 must be connected to the other 4 nodes therefore all the other vertices would have to have order 1 **or** the graph has 6 arcs and therefore with 5 vertices there would have to be cycles **or** the node of order 4 is connected to the other 4 nodes and so together with the node of order 3 (or 2) a cycle would be formed **or** a tree must have at least two nodes of order 1 as otherwise a cycle would be formed

Note: no marks in (c) for attempts based only on examples of graphs drawn with the vertex orders as stated

Question						Sc	heme			Marks	AOs
	(i)										
		Α	В	Ν	Н	C	D	E	F		
		1	3	4	0.5	0.25	0			M1	1.1b
							82	1			1.10
2 (a)								1.5		A1	1.1b
							92.125	2			
							124.125	2.5		A1	1.1b
							202.25	3	50.5625		
	(ii)	Final	l outp	ut = 5	0.5625	5				A1	1.1b
										(4)	
(b)			= 48.4							B1	1.1b
	$\left \left(\frac{50}{2} \right) \right $).562 48	25 – 48 8.4	$\left(\frac{3.4}{2}\right) \times \left(\frac{3.4}{2}\right)$	100					M1	1.1a
	4.47	7%								A1ft	3.2b
										(3)	
										(7	marks)

Notes

(a)(i)

M1: At least three rows of cells completed (so at least two values of D and E given) with either a correct first row or 82 found for D – condone repeated values in all columns or a single value in each row

A1: CAO – the values in the second, third and fourth rows correct (so up to the 92.125 in column D and the 2 in column E) – accept exact equivalent fractions

A1: CAO – all values correct in columns A to E – accept exact equivalent fractions (ii)

A1: CAO (output = 50.5625) (or equivalent e.g. $50\frac{9}{16}$) – allow if stated only in column F

(b)

B1: CAO (48.4)

M1: Correct method (including multiplying by 100) using candidate's final output from (a)(ii) and their value for *I*

A1ft: Follow through their final output from (a)(ii) (for reference: 4.4679752...) must be using 48.4 - dependent on M mark in (a) and percentage error being < 10% (answer must be given to 3 significant figures)

Question	Scheme	Marks	AOs
3(a)	D	M1	1.1b
		A1	1.1b
	B	A1	1.1b
	K	A1	1.1b
		A1	1.1b
		(5)	
(b)	Activity F (and/or G) requires activity B and the two activities A and C to be completed before F (and/or G) can begin. The time to complete A and C is double that of B and so B can be delayed waiting for A and C to be completed and so B is therefore not critical.	B1	2.4
		(1)	
(c)	Activities D, E and H	B 1	2.2a
		(1)	
	·	(7 n	narks)

Notes

In (a) condone lack of, or incorrect, numbered events throughout. 'Dealt with correctly' means that the activity starts from the correct event but need not necessarily finishes at the correct event, e.g. 'G dealt with correctly' requires the correct precedences for this activity, i.e. B and C labelled correctly and leading into the same node and G starting from that node but do not consider the end node for G. **Activity on node is M0**

If an arc is not labelled, for example, if the arc for activity G is not labelled (but the arc is present) then this will lose the first A mark and the final (CSO) A mark – they can still earn the second A mark on the bod. If two or more arcs are not labelled then mark according to the scheme. Assume that a solid line is an activity which has not been labelled rather than a dummy (even if in the corrct place for where a dummy should be)

(a)

M1: At least eight activities (labelled on arc), one start, and at least two dummies placed

A1: Activities A – G dealt with correctly (bod if no arrow on activity C)

A1: First two required dummies + arrows dealt with correctly

A1: Activities H – K dealt with correctly (A0 if no arrows on preceding dummies (oe))

A1: CSO – Final required dummy + all arrows present and correctly placed with one finish and no additional dummies. Note that the arrow for the final dummy could be reversed. Note that there are several correct viable positions for the final dummy

Note that additional (but unecessary) 'correct' dummies that still maintain precedence for the network should only be penalised with the final A mark if earned

(b)

B1: CAO - some mention of the time required to complete A + C compared with B (for the next activity to begin (either F and/or G)) oe e.g. paths through B have a maximum length of 3 (non-dummy) activities and there is at least one path of length 4 which does not include B so B cannot be critical **OR** the late time for B must be the same as the late time for A + C which is twice the duration of B and therefore B is not critical. Give bod to responses that imply that B and C meet at the same event, but C is also dependent on A (the key point for awarding this mark is that activities A and C imply that B is not critical)

(c)

B1: All three correct with no extras (ignore any mention of activity B)

Question	Scheme	Marks	AOs
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	10/5/x+y=16/9	M1	1.1b
4(a)	A 1 0 17 C 4 15 F 6 20 13 H 8 33 I <td>A1</td> <td>1.1b</td>	A1	1.1b
		A1ft	1.1b
	9 $(\mathbf{D} 2 9)$ 7 3 2 $3x + y$ $(\mathbf{G} 5 18)$	A1	1.1b
	9 12 21 18		
	Attempt to form a pair of simultaneous equations using their three working values from H	M1dep	3.1a
	e.g. $3x + y = 15$ or $x + y = 9$	A1	2.1
	x = 3, y = 6	A1	2.2a
		(7)	
(b)	Arcs BC and CD need to be traversed twice	B1	1.1b
		(1)	
(c)	Vertex C would appear 4 times	B1	2.2a
		(1)	
(d)	135 + 4(3) + 2(6) + 12 = 171	B1ft	1.1b
		(1)	
	·	(10 n	narks)

Notes

(a)

M1: For a larger number replaced by a smaller one in the working value boxes at C, F or G **A1:** For all values correct (and in correct order) at A, D, B and C (condone order of labelling starting at A with 0)

A1ft: For all values correct (and in correct order) at G and F following through from A, D, B and C **A1:** For all **working values** correct at E and H (order of working values must be correct at E but condone any order of working values at H) **however, at H if only one working value is seen e.g. 18** + 3x + y then both 33 and 24 + x + y must be seen (or clearly implied) in later working for this mark to be awarded (e.g. 3x + y = 15 and x + y = 9 would imply this). Similarly, if only two working values seen (e.g. 18 + 3x + y and 33) at H then the third (24 + x + y) must be implied by later working. Any incorrect working values seen at H though will score A0

M1dep: Forming two equations from the candidate's three working values at H

(so two of their 18+3x+y=24+x+y, 18+3x+y=33 and 24+x+y=33) – allow all three working values stated anywhere in their solution – dependent on previous M mark. Must be a complete method – so for those finding *x* from 18+3x+y=24+x+y they must also either state or use one of the other two equations (so candidates must be interacting with all three paths from A to H)

A1: Two correct equations formed (dependent on correct working values either seen at H or in their subsequent working) – can be unsimplified but must come from correct working A1: CAO for x and y (x = 3 and y = 6) – must come from correct working

If all three correct working values at H are seen (either at H or subsequent working) together with both correct answers (with no other working) then award M1A1A1.

(b) B1: CAO (arcs BC and CD)

(c) B1: CAO (4 times)

(**d**)

B1ft: Follow through only for 135 + 12 + 4x + 2y (for their *x* and *y* values provided 7 < x + y < 20 and *x* and *y* are positive constants)

	Scheme	Marks	AOs
5(a)	Minimise $(P =)x + 5y + 4z$	B1	3.3
	Subject to $x \ge \frac{3}{5}(x+y+z) (\Longrightarrow 2x \ge 3y+3z)$	B1	3.3
	$3y \ge 2z$	B1	3.3
	x + y + z = 1000	B1	3.3
	z = 1000 - x - y substituted into objective and constraints gives	M1	3.1a
	Minimise $(P =) y - 3x(+4000)$ subject to	A1	1.1t
	$x \ge 600 \text{ and } 2x + 5y \ge 2000$	A1	1.1b
		(7)	
	(i) Using least value of x to find y and z	M1	3.4
(b)	600 roses, 160 hydrangeas and 240 peonies	A1	3.2a
	(ii) £2360	A1	1.1b
		(3)	
	~ 1 · · · · · · · · · · · · · · · · · ·	• • • •	
B1: CAO (for objective) – must contain 'minimise' or 'min' only (so not 'minimum rms of x, y and z or x and y only	n') either w	hen
B1: CAO (a stated in terms	for objective) – must contain 'minimise' or 'min' only (so not 'minimum rms of x, y and z or x and y only $x + y + z$) oe – need not be simplified for this mark, accept $x \ge \frac{3}{5}(1000)$	n') either w	hen
B1: CAO (a stated in terms B1: $x \ge \frac{3}{5}$	rms of x , y and z or x and y only		
B1: CAO (a stated in terms the formula of the fo	The rms of x, y and z or x and y only $(x + y + z)$ oe – need not be simplified for this mark, accept $x \ge \frac{3}{5}(1000)$		
B1: CAO (a stated in tense	The second structure form of x, y and z or x and y only $(x + y + z)$ oe – need not be simplified for this mark, accept $x \ge \frac{3}{5}(1000)$ z or any equivalent form (need not be simplified nor integer coefficients z = 1000 (could be implied by earlier/later working) nating z from either the objective or both constraints using the constraint	for this ma	ırk)
B1: CAO (for stated in tender the state of the state o	The set of x, y and z or x and y only x + y + z or $x = 1000$ (could be implied by earlier/later working) to be a constraints using the constraints using the constraint to bjective in terms of x and y only – condone lack of 'minimise'	t $x + y + z =$	urk) = 1000
stated in ter B1: $x \ge \frac{3}{5}$ B1: $3y \ge 2$ B1: $x + y +$ M1: Elimin A1: Correc A1: Both contents	The second structure form only $x + y + z$ or x and y only $x + y + z$ or z and z or x and y only z or any equivalent form (need not be simplified nor integer coefficients $z = 1000$ (could be implied by earlier/later working) that ing z from either the objective or both constraints using the constraints and z from either the objective or both constraints using the constraints and z from either the objective or both constraints using the constraints and z from either the objective or both constraints using the constraints and z from either the objective or both constraints using the constraints u	t $x + y + z =$	urk) = 1000
B1: CAO (a stated in tended of the state	The set of x, y and z or x and y only x + y + z or $x = 1000$ (could be implied by earlier/later working) to be a constraints using the constraints using the constraint to bjective in terms of x and y only – condone lack of 'minimise'	t $x + y + z =$	urk) = 1000
B1: CAO (f stated in ter B1: $x \ge \frac{3}{5}$ (B1: $3y \ge 2$ B1: $x + y +$ M1: Elimin A1: Correc A1: Both comark) (b)(i) M1: Using	The set of x, y and z or x and y only x + y + z or $x = 1000$ (could be implied by earlier/later working) to be a constraints using the constraints using the constraint to bjective in terms of x and y only – condone lack of 'minimise'	s for this matrix t $x + y + z =$ cients for th ve integers)	ırk) = 1000 is
B1: CAO (for stated in terms and in terms are consistent of the state of the sta	The function of x, y and z or x and y only $(x + y + z)$ oe – need not be simplified for this mark, accept $x \ge \frac{3}{5}(1000)$ z or any equivalent form (need not be simplified nor integer coefficients z = 1000 (could be implied by earlier/later working) nating z from either the objective or both constraints using the constraint t objective in terms of x and y only – condone lack of 'minimise' constraints correct ($x \ge 600$ and $2x + 5y \ge 2000$ - must be integer coefficients their least value of x to find both y and z (with both y and z being positi	s for this ma t $x + y + z =$ cients for th ve integers) gers)	urk) = 1000 is _
B1: CAO (f stated in ter B1: $x \ge \frac{3}{5}$ (B1: $3y \ge 2$ B1: $x + y +$ M1: Elimin A1: Correc A1: Both comark) (b)(i) M1: Using note that all A1: All threfrom correct (ii)	The implicit function of x and y only $x + y + z$ or x and y only $x + y + z$ or any equivalent form (need not be simplified nor integer coefficients $z = 1000$ (could be implied by earlier/later working) nating z from either the objective or both constraints using the constraint to bjective in terms of x and y only – condone lack of 'minimise' constraints correct ($x \ge 600$ and $2x + 5y \ge 2000$ - must be integer coefficients their least value of x to find both y and z (with both y and z being position of the constraint $x + y + z = 1000$ (and must all be integer coefficients).	for this matrix t $x + y + z =$ cients for the ve integers) gers) c) – must co	urk) = 1000 is me

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom